Footnote
(1)
\begin{eqnarray} \lefteqn{ \cos x = 1 -\frac{x^{2}}{2!} +{} } \\ & & {}+\frac{x^{4}}{4!} -\frac{x^{6}}{6!}+{}\cdots \end{eqnarray}

The first pulsar was observed by J. Bell and A. Hewish [1]. Another reference [see 2].

Some text1. Here we go
with another footnote2.

Bibliography
1. Bell, J.; Hewish, A.; Pilkington, J. D. H.; Scott, P. F.; and Collins, R. A. Observation of a Rapidly Pulsating Radio Source. Nature 217, 709, 1968.
2. Guy, R. K. Modular Difference Sets and Error Correcting Codes. §C10 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 118-121, 1994.

Eq.(1)

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License